Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels.
نویسندگان
چکیده
The ClC protein family includes voltage-gated chloride channels and chloride/proton exchangers. In eukaryotes, ClC proteins regulate membrane potential of excitable cells, contribute to epithelial transport, and aid in lysosomal acidification. Although structure/function studies of ClC proteins have been aided greatly by the available crystal structures of a bacterial ClC chloride/proton exchanger, the availability of useful pharmacological tools, such as peptide toxin inhibitors, has lagged far behind that of their cation channel counterparts. Here we report the isolation, from Leiurus quinquestriatus hebraeus venom, of a peptide toxin inhibitor of the ClC-2 chloride channel. This toxin, GaTx2, inhibits ClC-2 channels with a voltage-dependent apparent K(D) of approximately 20 pm, making it the highest affinity inhibitor of any chloride channel. GaTx2 slows ClC-2 activation by increasing the latency to first opening by nearly 8-fold but is unable to inhibit open channels, suggesting that this toxin inhibits channel activation gating. Finally, GaTx2 specifically inhibits ClC-2 channels, showing no inhibitory effect on a battery of other major classes of chloride channels and voltage-gated potassium channels. GaTx2 is the first peptide toxin inhibitor of any ClC protein. The high affinity and specificity displayed by this toxin will make it a very powerful pharmacological tool to probe ClC-2 structure/function.
منابع مشابه
JBC M9:031724, Revised ISOLATION AND CHARACTERIZATION OF A HIGH AFFINITY PEPTIDE INHIBITOR OF CLC-2 CHLORIDE CHANNELS
1 School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332. Program in Molecular and Systems Pharmacology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322. 3 Peptide Synthesis Core Facility, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1. Dept. of Physiology & Biophysics, University of Calgary, 3330 Hospital Drive NW, Calg...
متن کاملThe Poststructural Festivities Begin
ClC chloride channels orchestrate the movement of chloride necessary for proper neuronal, muscular, cardiovascular, and epithelial function. In this issue of Neuron, Jentsch, Pusch, and colleagues use the structure of a bacterial ClC homolog to guide a mutagenic analysis of inhibitor binding to ClC-0, ClC-1, and ClC-2.
متن کاملChloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells
Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...
متن کاملDissecting a regulatory calcium-binding site of CLC-K kidney chloride channels
The kidney and inner ear CLC-K chloride channels, which are involved in salt absorption and endolymph production, are regulated by extracellular Ca(2+) in the millimolar concentration range. Recently, Gradogna et al. (2010. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201010455) identified a pair of acidic residues (E261 and D278) located in the loop between helices I and J as forming a putat...
متن کاملGating Competence of Constitutively Open CLC-0 Mutants Revealed by the Interaction with a Small Organic Inhibitor
Opening of CLC chloride channels is coupled to the translocation of the permeant anion. From the recent structure determination of bacterial CLC proteins in the closed and open configuration, a glutamate residue was hypothesized to form part of the Cl--sensitive gate. The negatively charged side-chain of the glutamate was suggested to occlude the permeation pathway in the closed state, while op...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 284 38 شماره
صفحات -
تاریخ انتشار 2009